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Abstract. We present numerical results that allow a precise determination of the transition point
and of the critical exponents of the four-dimensional Edwards–Anderson spin glass with binary
quenched random couplings. We show that the low-temperature phase undergoes replica symmetry
breaking. We obtain results on large lattices, up to a volumeV = 104: we use finite-size scaling
to show the relevance of our results in the infinite volume limit.

1. Introduction

The question of whether short-range Edwards–Anderson (EA) spin glasses share the
remarkable features of the infinite-range Sherrington–Kirkpatrick (SK) model [1] is still an
open one. In this work we present Monte Carlo (MC) simulations of the four-dimensional
(4D) EA ising spin Glass [2–8] with a bimodal distribution of the quenched couplings,
performed on large lattice volumes (thanks to the tempering and parallel tempering simulation
technique [9,10]), with a large number of samples, and down to low values of the temperature
T . In this way we are able to obtain detailed information about the nature of the transition, to
determine with good precision critical temperature and exponents, and to give strong evidence
supporting the fact that the low-T phase is mean-field-like. A great deal of effort has gone
into ensuring the reliability of the data on delicate issues such as thermalization checks and
consistency of data analysis.

The paper is organized as follows: first, we describe the model and the parameters of our
MC simulation. We then present data related to the Binder cumulant and to the determination
of Tc andν. By analysing the overlap susceptibility we determine the value ofη. Finally, we
discuss in detail the probability distribution of the overlapP(q). We present, among other
things, evidence for the non-triviality of a single samplePJ (q) and for a non-zero value of the
position of the maximum ofP(q), qmax , in the thermodynamic limit.

2. The numerical simulation

It is very difficult to run a reliable numerical simulation of finite-dimensional spin glasses. The
main reason for such difficulties is the presence of many meta-stable states (responsible for
aging effects as well as for many other peculiarities of spin glasses [1]). The MC dynamics
gets easily trapped, and the system only probes a restricted part of phase space.
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Table 1. Parameters of the tempered MC runs.

L Thermalization Equilibrium Samples Nβ δT Tmin Tmax

3 100 000 100 000 3200 17 0.1 1.2 2.8
4 100 000 100 000 2944 17 0.1 1.2 2.8
5 100 000 100 000 1920 17 0.1 1.2 2.8
6 100 000 100 000 1120 33 0.05 1.2 2.8
8 100 000 100 000 1376 33 0.05 1.2 2.8

10 150 000 150 000 512 56 0.04 1.2 3.4

Many algorithmic solutions have been proposed to improve the speed of thermalization
of these systems. All these techniques are related to density scaling methods (see [10] for a
review and references): we use here the maybe simplest implementation of these ideas, parallel
tempering [9], where a number of configurations of the system are allowed to exchange their
temperature (for multi-canonical methods, that are strongly related and have in principle an
even wider range of applicability, see, for example, [11]). Thanks to parallel tempering we
have been able to thermalize systems of volumeV = 104 down toT ' 1.2(0.6Tc).

We study the 4D EA Ising spin glass with binary couplings, with Hamiltonian

H ≡ −
∑
〈i,j〉

Jijσiσj (1)

where the sum runs over nearest neighbouring sites, theσi are±1 Ising spins, and the couplings
are quenched variables drawn with probability1

2 among the two values{−1,+1}. Theoverlap
among two different systems is defined as

qα,β ≡ 1

V

∑
i

σ αi σ
β

i (2)

whereα andβ denote two configurations of the system in the same realization of the quenched
disorder. The overlap probability distribution for a given sample is

PJ (q) ≡ 〈δ(q − qα,β)〉 (3)

where〈. . .〉 denotes the usual Gibbs average. Its average over samples is

P(q) ≡ PJ (q) (4)

and its moments are defined as

q(n) = 〈qn〉 =
∫

dq qnP (q). (5)

We always denote by〈. . .〉 the thermal averages and by. . . the disorder averages.
Our simulations have been performed on a set of workstations, using a multi-spin-coding

program that was inspired by the work of [12]. We have selected the parameters of our MC
and parallel tempering runs such to guarantee a complete thermalization of the measured
observables. We will discuss this issue in some detail.

Table 1 summarizes the relevant parameters used in the simulation: we give among others
the number of thermalization steps, of measurements steps, the number of different disorder
realizations and the temperature ranges investigated by tempering. Temperature values have
been chosen to be uniformly spaced in the interval betweenTmin andTmax .

We have used different methods to verify that we have correctly thermalized the systems.
Using ‘parallel tempering’, one is actually performing a generalized Markov chain where
systems at different temperatures are allowed to ‘move’ in temperature–space too. A necessary
condition for the Markov chain to be effective in de-correlating different measurements is the
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fact that each system spans at least a few times all the allowed temperature range during the
simulation. In this respect we checka posteriorithat the probability of swapping temperature
has been of the order of 0.5 (ensuring in this way that a single system did not get stuck at a
specific value ofT ) and that the histogram counting the time that each system has spent at
each temperature is fairly flat. This requirement is fulfilled in all our simulations, for allT and
L values.

Another very strong check of thermalization is the fact that the single samplePJ (q) is
symmetric in the limits of the statistical significance of the histogram. This is very well verified
as can be seen, for example, in figure 12 where we plotPJ (q) for selected samples.

3. The Binder parameter,Tc and ν

We start by discussing the overlap Binder parameter. We will use it to qualify the phase
transition, and to determine the critical temperature and the first of the critical exponents,ν.
We will use and describe different methods to compute the quantities we are interested in. Our
statistical sample of configurations is a large sample, and our set of data precise (even as far as
the dependence over the lattice volumeV is concerned): we will show that different analysis
styles give compatible (precise) results.

We define the usual overlap Binder parameter as

g = 1

2

(
3− 〈q

4〉
〈q2〉2

)
. (6)

The Binder parameter is an adimensional quantity, and its value at the critical point is universal.
Close toTc its leading behaviour is

g(L, T ) ' ḡ(L 1
ν (T − Tc)). (7)

In usual ferromagnetic systems the infinite volume limit of the magnetization Binder cumulant
is zero in the warm phase (where the distribution of the order parameter is Gaussian) and one
in the broken phase: for a spin glass with replica symmetry breaking (RSB) and hence a non-
trivial distribution of the overlap order parameter, the transition is signalled by a non-trivial
value ofg in the broken phase (in the warm phase one expects an infinite volume limit of zero).
In both cases the location ofTc is signalled by the crossing of the curves ofg versusT for
different values of the lattice sizeL (asymptotically for largeL): largeL curves are lower for
T > Tc and higher forT < Tc. We show in figure 1g versusT for differentL values. The
crossing point is close toT ' 2 for all lattice values, and the value of the Binder cumulant
at criticality, gc, is close to 0.45. Also, error analysis has been a sensitive issue. We have
always used a jack-knife or a bootstrap error analysis [13]directly on the fitted parameters
to determine errors. Still, one has to keep in mind that statistical errors come together with
systematic errors, due to the functional form one decides to try to fit (typically the asymptotic
scaling form, that on finite-size lattices is affected by power corrections). The two types of
errors have to be kept under control separately.

In figure 1 the crossing of the differentgL curves is very clear. It is interesting to stress
the difference with the 3D case [14], where the crossing atTc looks more like a merging of
the different curves. The 3D case is (very) close to the lower critical dimension, while in four
dimensions we are in a safe region: potentially this is important to make the physical picture
easier to understand.

Let us discuss a first naive approach to the data. By looking at the crossing of the curves
gL(T ) versusT for different (L,L + 1) values one sees that one cannot extract a systematic
dependence of the crossing point (and hence of the estimate of the effective critical temperature
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Figure 1. Binder parameterg versusT , for different values of the linear lattice sizeL (see the
caption in the plot).

Tc(L,L + 1)) overL. Any systematic trend is smaller than the statistical error (maybe just
showing a systematic average decrease of the estimateTc(L,L + 1) when going from smaller
to largerL values). The preferred value ofTc is slightly larger than 2.00. A first naive estimate
of ν can be done by linearizinggL(T ) around the estimate we have given forTc, and by
evaluating the logarithm of the slope ratio (divided by the logarithm of the two lattice sizes
ratio, log( L

L+1)). With this method, one gets a first estimate for a set of effective exponents
ν(L,L + 1). Here too, one cannot distinguish any clear strong dependence over the lattice
size: the error one gets onν is completely correlated to the variation of the estimate ofTc.
For largerTc one estimates a lower value ofν, while for lower estimates ofTc one gets larger
estimates forν. The error is dominated by this effect. The estimate forν is close to one.

To get a reliable estimate ofTc and ofν we have used two methods of analysis ofg (see,
for example, the discussion of the analysis of [14, 15]). In the first approach we linearize the
data close toTc (for all L values) and we run a global fit to all data: we fitTc andν for the
two-variable functiongL(T ) (as we said, linearized close toTc). We use data in aT range
around the interval 1.9–2.1. We estimate the errors over the fit parameters (Tc andν) by a
jack-knife approach [13]: we repeat the fit approximatelyK times over a subsample of the data
containing all of our statistical sample but a fraction1

K
. The error is estimated by looking at

fluctuations of the results of theK fits, and by accounting for the fact they are correlated [13].
We also repeat the fits by discarding the smallerL values, to check if we can observe any
systematic drift (again with good accuracy the average value of the result does not seem to
depend systematically over theL range selected). Results are very stable, and the value we
estimate forν systematically comes out to be close to 1.10.

In the second approach, that can have different variations, one only uses data in the warm
phase. This method leads to a smaller statistical error, that is balanced from a larger systematic
incertitude (since we only select data at a given distance fromTc, and approachingTc leads to
a systematic drift of the estimate). In this case we start by selecting a threshold value forg,
g∗ 6 gc. We start with low values ofg∗, and we approachgc from below: we cannot get too
close togc or the merging of the curves for different sizes makes the error over the measurement
too large (we use values ofg∗ from 0.2 to 0.4). We use a polynomial fit to interpolate the
data forg(T ), at differentL values. We have decided to use a polynomial of degree four (we
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Figure 2. g versusL
1
ν (T − Tc), with ν = 1.0 andTc = 2.03.

have checked that it guarantees stable fits and consistent results), and we fit aT range in the
critical region (forL = 3 we use the data in theT range 1.5–2.8, forL = 10 we use the range
1.88–2.16). We now defineTc(L, g∗) as the crossing point of the fitted polynomial with the
horizontal line atg∗, andν∗ as

lim
L→∞

Tc(L, g
∗) = Tc(g∗) +

A

L
1
ν∗

(8)

wheng∗ → gc ν
∗ → ν. If g∗ is too small violations of scaling are dominant, while if one

approaches too muchgc the merging of theg curves makes the error over the determination of
ν∗ overwhelming. The errors have been estimated by using abootstrapapproach (very similar
in spirit to the jack-knife technique, see [13]): one emulates fake sets of data with a Gaussian
distribution around the real measurements, fits these multiple sets of fake data and compute
the errors over the fit parameter.

We note finally that we have also used a variation of this second method, described in [14],
based on the direct analysis of the derivative ofg with respect toT . This method also gives
results that are compatible with others.

Our final estimates, averaged over the results obtained using these different approaches,
are

Tc = 2.03± 0.03 (9)

and

ν = 1.00± 0.10. (10)

In the rest of this paper we will use these two values as our best estimates ofTc andν. We
show in figure 2 the data forgL(T ) rescaled by using these two values: the scaling turns out
to be very satisfactory.

4. The Overlap Susceptibility andη

The determination of the overlap susceptibility,χq , provides various possible ways to determine
the exponentη (and hence of the exponentγ ). In a spin glass in the RSB phase the overlap
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Figure 3. Overlap susceptibilityχq versusT , for differentL values.

susceptibility

χq ≡ V 〈q2〉 (11)

is expected to diverge for all values ofT 6 Tc. We showχq versusT in figure 3.
The first method is based on the fact that we expect that atT = Tc

χq(L, T = Tc) ' L2−η. (12)

We use a linear interpolation of the data in the region close toTc. As in the case ofg, the error
in the estimate is mainly related to the choice ofTc. The fit atT = 2.03 by usingL > 3 gives
an estimate of 0.28.

In the second method we use data whereL� ξ . We go as close toTc as possible, under
the condition that data on our larger lattice (L = 10) coincide, in our statistical accuracy, with
the ones atL = 8. Here we expect that

χq(T ) ' (T − Tc)−(2−η)ν . (13)

We can use data down toT = 2.5 (i.e. at a1T ' 0.5 fromTc), where finite-size effects start
to be sizable even atL = 10. We show our best fit (in aT interval of= 0.2) in figure 4. In
this region we have a stable fit, withη close to−0.4. Even if this second measurement is not
very precise (we have to stay quite far from the critical region) it is interesting that we get a
coherent determination ofη, by using a completely different scaling region than in the former
analysis (the new analysis also depends on the value ofν we have determined by usingg).

The last approach we use for determiningη is based on the analysis of the scaling properties
of the distribution probabilityP(q) of the overlap order parameterq in the regionq ' 0 at
T = Tc. We analyse the behaviour ofP(q) in the next section, but for now we discuss the
scaling ofP(0) of Tc in order to define our determination ofη. At T = Tc we expect

P(q ' 0) ' Ld−2+η
2 (14)

i.e. in d = 4 a scaling withL
2+η
2 . We find a very good best fit (we do not include theL = 3

data), with anη value close to−0.3.
By considering all the methods we have discussed in this section we give our final estimate

η = −0.30± 0.05 (15)
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Figure 4. Best fit to the overlap susceptibilityχq versusT − Tc, atT > Tc.

Figure 5. Rescaled overlap susceptibilityχSG
L2−η versusL

1
ν (T − Tc), with Tc = 2.03,ν = 1.0 and

η = −0.30.

that we will use in the rest of our analysis. In figure 5 we plotχq rescaled by using our best
fits. The rescaling works fine.

Let us also notice that we have a good agreement with the results reported in [7] for the
4D EA model with Gaussian couplings. There the authors findν ' 1.06 andη ' −0.35.
Universality seems to work.

5. P (q)

In sections 3 and 4 we have shown that the 4D EA model undergoes a phase transition, and we
have determined its location and the critical exponents. Now we will try to qualify it in better
detail, by determining and analysing the probability distribution of the order parameter,P(q).

In figure 6 we show our averageP(q) (averaged over the different disorder realizations)
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Figure 6. P(q) atT = 1.2 (broken phase), for different lattice sizes.

Figure 7. P(q) atT = 2.2 (warm phase), for different lattice sizes.

atT = 1.2< Tc. When increasing the lattice size the peak whereP(q) is maximum shifts to
lowerq values: to show that there is a phase transition to a phase with a non-zero expectation
value ofq we have to show that the peak does not go toq = 0 whenL → ∞. Theplateau
of P(q) for q ' 0 does not lower when increasingL, as we will discuss in more detail in
the following. We remind the reader that in the RSB Parisi mean field scenario theP(q) is
(in zero magnetic field) a non-trivial function, that in the infinite volume limit is formed by a
δ function atq = qEA and by a regular part that extends down toq = 0. In contrast, if the
broken phase has the same structure of the one of an ordered ferromagnetP(q) has to become
asymptotically the sum of twoδ functions at±qEA.

For the sake of comparison we show in figure 7 what happens in the warm phase, where
the averageP(q) shrinks to a Gaussian distribution aroundq = 0, whenL→∞.

In figure 8 we compareP(q) at different values ofT on the same lattice size. From the
single-peaked shape at highT one gets a clear double-peaked structure, with a clearplateau
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Figure 8. P(q) atL = 8, for all values ofT . From a single peak inq = 0 to a continuous part
and double peak at largeq for increasingT .

Figure 9. qmax versusL−1.3.

at lowq, in the low-T region.
As we have said, in order to establish that we have a real phase transition in the infinite

volume limit we have to show that the value ofq = qmax whereP(q) is maximum does not
go to zero. We start by plotting in figure 9qmax versusL−1.3 (the exponent 1.3 comes from
our best fit, see later). It is easy to see that an asymptotic valueqmax = 0 seems implausible.

Making this last statement more quantitative needs a more careful analysis. In order to do
that we fit

qmax(L) = qmax(∞) +
A

Lα
(16)

both withqmax(∞) = 0 and by allowing it a non-zero value. In figure 10 we plot the values of
qmax versusL and the results of the two best fits, one with a fitted value ofqmax(∞) and the
second with fixedqmax(∞) = 0. This second fit is clearly unsuitable, and it has a very high
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Figure 10. qmax versusL and our two best fits.

Figure 11. P(q ' 0) versusL. T = 1.2.

value ofχ2. In the first fit we get

qmax(∞) = 0.548± 0.006 (17)

which is our best estimate for the position of theδ function atqEA in the infinite volume limit.
We estimateα = 1.3± 0.1 (in the fit with a zero asymptotic value one finds the very small
valueα ' 0.2).

In figure 11 we show the value ofP(q) close toq = 0 (averaged over a smallq range,
whereP(q) is remarkably constant, in order to diminish statistical fluctuations) as a function
of L. One cannot observe any statistically significant decrease of this value for increasingly
large lattice volume (there is a small decrease only for small volumes). The most plausible
implication of this evidence is that the system has many stable states, and that the coldT phase
is characterized by RSB (even if it has to be stressed that this evidence is not as strong as that
implied by figure 10).
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Figure 12. PJ (q) for selected samples.T = 1.2,L = 10.

Figure 13. Percentage of disorder configurations such thatPJ (q) has 1, 2, 4 and 6 peaks versus
L. The number of configurations with a complex phase space (PJ (q) with many peaks) increases
strongly withL.

In figure 12 we plotPJ (q) for selected samples, atT = 1.2, L = 10. One can see that
they are very complex distributions: such a pattern is typically related to the presence of many
states (it should be noticed, however, that the small side peaks are not always there because of
the presence of a real state).

To be more quantitative we have measured the percentage of disorder configurations such
that PJ (q) has 1, 2, 4 and 6 peaks versusL, and we plot it in figure 13. The number of
configurations with a complex phase space (PJ (q) with many peaks) increases strongly with
L. We use this evidence to rule out the picture of amodified droplet model, that has been
discussed, among others, in [16] and in references therein. The picture of the modified droplet
models implies that for each realization of the quenched disorder there are (in the cold phase)
only two ground states, but that the value ofqEA (i.e. the support of theδ function that constitutes
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Figure 14. 〈q2〉2, 〈q2〉2 and〈q4〉 versusT .

thePJ (q)) depends on the sample. Here, in contrast, the number of states for a given sample
is strongly increasing withL (and with decreasingT ).

6. Sum rules

In this section we discuss another important feature of the broken phase of the 4D EA model.
The starting point for this analysis can be, for example, the relation

〈q2〉2 = 2
3〈q2〉2 + 1

3〈q4〉. (18)

This is one of a set of relations that are valid in the mean field theory of spin glasses [17].
The work contained in [18] has established numerically that these relations are also satisfied
with good accuracy in finite-dimensional spin glasses. Following these findings a rigorous and
theoretical analysis has improved our understanding of such a set of sum rules [19–22]: they
are strongly related to the ultrametric properties of the phase space.

First of all we show evidence that the relation (18) has a non-trivial content in the low-T

phase (in the high-T phase it is satisfied in the form 0= 0). Figure 14 shows that the values
of the three quantities involved in (18) are significantly different from zero belowTc (we have
already shown in better detail that the infinite volume of such quantities is non-zero).

In figure 15 we show the difference between the left- and the right-hand side of (18).
The two contributions cancel out with good accuracy (to three significant figures), and
asymptotically for large lattice size the difference extrapolates to zero.

Another possible way to visualize the result is to plot the ratio of the left- and the right-
hand side. As figure 16 shows, forT belowTc we get identically one, while forT →∞ we
get the value3

5, expected for a GaussianP(q).
We have also fitted the difference plotted in figure 15, for various values of temperatures

T < Tc: in all cases a fit to an asymptotic zero value with power corrections works very well,
and the exponent of the corrections is close to 3 for allT values. As an example we plot the
data together with the best fit forT = 1.4 in figure 17.
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Figure 15. The left- minus the right-hand side of equation (18) versusT .

Figure 16. Ratio of the left- and right-hand side of equation (18) versusT .

7. Conclusions

In this paper we have been able to give strong evidence for mean field behaviour of the 4D
Ising spin glass with binary couplings. Life in the 4D model is easier than in three dimensions,
where even after a large number of intense numerical simulations the evidence for a phase
transition is still slightly marginal (even if, at this point, it appears convincing enough). In our
case already the crossing of the Binder cumulants is the very clear signature of a typical phase
transition (as opposed to the quasi-merging, quasi-Kosterlitz–Thouless behaviour of the 3D
case). It is clear that the 3D case is very close to the lower critical dimension, and that observing
the effects of the physical critical point there is dramatically difficult. Four dimensions are
safer, and numerical simulations show that very clearly.

We have been able to determine critical exponents precisely, and to enter into the large
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Figure 17. The left- minus the right-hand side of equation (18) versusL, atT = 1.4, and the best
fit to a zero constant value with a simple power correction.

volume region with good accuracy. For example, we have been able to show that the peak of
P(q) does not go toq = 0 for increasing lattice size, and (with a slightly poorer accuracy and
level of reliability) that the plateau atq ' 0 does not decrease with increasing lattice size.
Also, we remind the reader that non-trivial sum rules are satisfied with very good accuracy.
Therefore, things look quite clear in the 4D case.
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(Iñiguez D, Parisi G and Ruiz Lorenzo J J 1996Preprintcond-mat/9603083)
[16] Newman C M and Stein D L 1996Phys. Rev. Lett.76515 and references therein
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